A version of Sharkovskii’s theorem for differential equations
نویسندگان
چکیده
منابع مشابه
A Meshless Method for Numerical Solution of Fractional Differential Equations
In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
A Central Limit Theorem via Differential Equations
1. Main theorem. In this paper, we consider parameters defined on random discrete processes. When the parameters change by only a small amount from one state in the process to the next, one often finds that the parameters satisfy a law of large numbers, that is, the parameters are sharply concentrated around certain values. Wormald [6] gives some general criteria which ensure that given paramet...
متن کاملA Compactness Theorem for Homogenization of Parabolic Partial Differential Equations
It is well known that the modeling of physical processes in strongly inhomogeneous media leads to the study of differential equations with rapidly varying coefficients. Regarding coefficients as periodic functions, many attempts for getting approximate solutions are accomplished, and some of successful ones are G-convergence by Spagnolo, H-convergence by Tartar and Γ-convergence by De Giorgi. A...
متن کاملA More General Version of the Costa Theorem
In accordance with the Costa theorem, the interference which is independent of the channel input and known non-causally at the transmitter, does not affect the capacity of the Gaussian channel. In some applications, the known interference depends on the input and hence has some information. In this paper, we study the channel with input dependent interference and prove a capacity theorem that n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2004
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-04-07627-0